High-cell density-induced VCAM1 expression inhibits the migratory ability of mesenchymal stem cells.
نویسندگان
چکیده
MSCs (mesenchymal stem cells) migrate into damaged tissue and then proliferate and differentiate into various cell lineages to regenerate bone, cartilage, fat and muscle. Cell-cell adhesion of MSCs is essential for the MSC-dependent tissue regeneration after their homing into a damaged tissue. However, it remains to be elucidated what kinds of adhesion molecules play important roles in the cell-cell communication between MSCs. In order to identify adhesion molecules that facilitate mutual contact between MSCs, a comprehensive analysis of mRNA expression in adhesion molecules was performed by comparing profiles of expression status of adhesion molecules in MSCs at low- and high-cell density. We found that the expression level of VCAM1 (vascular cell adhesion molecule-1)/CD106 was clearly up-regulated in the human bone marrow-derived MSCs-UE7T-13 cells - under a condition of high cell density. Intriguingly, the migratory ability of the cells was clearly accelerated by a knockdown of VCAM1. Furthermore, the migratory ability of UE7T-13 cells was decreased by the over expression of exogenous VCAM1. In addition, the high cell density-induced expression of VCAM1 was clearly suppressed by NF-κB (nuclear factor-κB) signalling-related protein kinase inhibitors such as an IKK-2 (IκB kinase-2) inhibitor VI. In conclusion, the high cell density-induced VCAM1 expression through the NF-κB pathway inhibits the migratory ability of human bone marrow-derived MSCs.
منابع مشابه
Comparative Analysis of Expression of Chemokoine Receptors CXCR4, CXCR6, CCR1 and CX3CR in Human Adipose-Drived Mesenchymal Stem Cell with Valproic Acid
Introduction: Chemokine receptors are found on the surface of stem cells. There have been 19 distinct chemokine receptors described in mammals. Chemokines are major players in migration and homing. Therefore, changes in their levels or function can help us to increase the migratory potential of these cells. Valproic acid differs in structure from other drugs in common use. The way in which Va...
متن کاملFluvoxamine inhibits some inflammatory genes expression in LPS/stimulated human endothelial cells, U937 macrophages, and carrageenan-induced paw edema in rat
Objective(s): Fluvoxamine is a well-known selective serotonin reuptake inhibitor (SSRI); Despite its anti-inflammatory effect, little is known about the precise mechanisms involved. In our previous work, we found that IP administration of fluvoxamine produced a noticeable anti-inflammatory effect in carrageenan-induced paw edema in rats. In this study, we aimed to evaluate the effect of fluvoxa...
متن کاملFunctional Inhibition of Nucleostemin Gene-Acoordinator of Self-Renewal Ability-In Bone Marrow Derived Mesenchymal Stem Cells by Rnai Strategy
Purpose: The aim is to downregulate the expression level of NS as an important factor in sustaining stem cells and certain types of cancer cells self-renewal ability in bone marrow derived mesenchymal stem cells by RNAi strategy and investigate the effects of absence of NS in these cells. Materials and Methods: Double strand NS-specific and control siRNA oligos were designed and transfected in...
متن کامل3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression
New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...
متن کاملDifferentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells into Insulin Producing Cells Using Minimal Differentiation Factors
Background & Aims: Type 1 diabetes, or insulin-dependent diabetes, is an autoimmune disease in which pancreatic beta cells are destroyed by the immune system. Hitherto, no definite treatment has been found for this condition. Mesenchymal stem cells (MSCs) are multipotent, self-renewing cells that have the ability to differentiate into mesodermal tissues. This ability has attracted the attention...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell biology international
دوره 35 5 شماره
صفحات -
تاریخ انتشار 2011